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ON ASYMPTOTIC INTEGRATION OF THE EQUATIONS OF MOTION 

OF MECHANICAL SYSTEMS SUBJECTED TO RAPIDLY OSCILLATING FORCES* 

V-V. STRYGIN 

An algorithm for the direct expansion of solutions of the Cauchy 
problem in a small parameter in a finite time interval is proposed in 
the development of the idea in the author's paper /l/ for systems of 
differential equations describing the motion of mechanical systems 
subjected to rapidly oscillating forces. 

We consider a mechanical system whose motion is described by the vector differential 
equation 

A (q)cI" + B (q)q' = F (t, e) + oQ, 0, 9, r) (1) 
where q = (ql, . . ., qn) is the generalized coordinate vector, the dot denotes differentiation 
with respect to time t', A is a positive-definite matrix of the inertial forces, B is the 
matrix of the dissipative forces, oQ, are large amplitude oscillating forces (03 1, T= ot). 
For simplicity we will consider @to be a trigonometric polynomial inz of period 2n, with 
zero mean in 'i. Let the following initial conditions be given 

4 (0) = a, Q'(O) = B (2) 

We will seek the approximate solution of the Cauchy problem (1) and (2) in the form 

q* = “0 (t) + o-1 IUl (t) f v, (t, s)l + . 1. + 0-b lu, (t) + % (6 T)l -I- . . . (3) 

where vi (t, x) are periodic functions of 7 of period 2n with zero mean value. The sum 
I(,+ o-Q+ + . . . is the smooth motion component while o-'v, + o-'u, + . * . is the vibrational 
component. We have 

A (q*) = A* -f- o-‘Aqo (~1 -I- ~3 -t 

CL-*Aqo (ua f us) + l/aA;q (~1 + ~1)’ + * l . 

(Aa=.4(ug), A ‘=A P q (uo), . . .) 

Analogous expressions hold for B(p*),F(t,q*), . . . . 

We obtain from the initial conditions (21, formulas (3) and the result of differentiating 
(3) with respect to t 
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uo (0) -+ w-1 [u, (0) i- I’I ((1, O)] -j- w-: [IL2 (0, t u2 (0, 011 + . = 2 i 

uo’ (0) + dq (0, O)!dr -I co-’ [q (0) Jr L),’ (0, 0) -t au, (0, WarI + . z= p 

It therefore follows that 

i,,, ((I) =m '1, 1~~' (0) + a~., (0, O)/dr = fi / ;m ) 

while the coefficients for in expansions (4) are zero. Now substituting (3) 
into (1) , we obtain the ~den~~~yo~Y"'. 

_-l(9') 9"" 1~ B(g*)q*'= I;(,, 9) -,- O'Il (r, 9*, r) (r'? 

We try to select Us and U, such that the identity (6) would be satisfied for all 
1E 10, Tl and t E [O, 00). We equate the coefficients of powers of o,o',o-~~ a+, etc. 

We obtain for the first power in (0 

AV*i',:ar" E CD0 (@O = 0 (t, u0, .c)) 

Since the matrix A0 is reversible and @" is a trigonometric polynomial in t with zero 
mean, then c‘, can be determined uniquely in the form of a trigonometric polynomial in r 
with coefficients dependent on t and z10 

I', = fl (& %, a) (7) 

If it is taken into account that 110 (0) = a, then the quantity 

Y, (a) = du, (O,O)/& = af, (0, a, O)/& 

is completely determined. Consequently %I' (0) = B - yy, (a) is also determined from (5). 
Now equating coefficients for the zeroth power of o in the identity (6), we obtain 

A’ luo” -+ 23i-;/UT L @q/W] f A,” (ul + u,)d2u,/dz2 + (8) 
B” (I(,,’ -L dq';c,,r) .L F" + oqo (u, + vl) (P" = F (t, Ua)) 

Let us calculate the mean value of the left and right sides of the last equality with 
respect to 7. We have (W' is the vibrational force) 

A%," i Pu,' E P + w0 ($0 
W0 =- <@9'r1 (t, T)> -- <[A,700, (t. T)] d2u,idrz> 

Therefore, we obtain (9) and the initial conditions u,(O)= a, Us'= fl-- Yl(a) to determine 
% (t). We assume this problem to be solved in the segment [O,T]. Then we finally also 
obtain 01 (G r) from (7). 

We now examine components with zero mean in t in (8). We obtain 

A”d2u,id+ = Q1” + Qa”u, (IO) 

where Q1" and QpO are known vector functions and matrices dependent on t, %V r. We will seek 
the function U, in the form 

u:! y %(t, T) + Z, (t, T)% (t) 

where u'z (G r) is a vector function while Z, (t? T) is a matrix whose coefficients are 
trigonometric polynomials in T having zero mean value. Now wI and Z, are determined uniquely 
from (lo), but, the function vt still remains undetermined since the function *I (0 is 
undetermined. 

We now equate the coefficients for o-1 in (6) and in the equality obtained we take the 
average with respect to 7. Consequently we obtain the following equation for u1 

A”u,” + Pu, = 4(t) + C, (t)a, (11) 

where the vector function d, (t) and the matrix c, (t) are determined just by using the L(~, 

019 w1 and Z, already known. Let US note that we conclude from the expression in square 
brackets in (4) being equal to zero that the quantities 

(11 (0) = --VI (0, O), %' (0) = --ul’ (0, 0) - au, (0, 0)/h ($2) 

are known. This enables u1 to be determined completely from (11) and (12). 
Furthermore, vs should be sought in the form 

% = U'3 (t, r) + Z, (t, +a P) 

etc. This procedure enables us to determine the approximate solution 

4,y* = uo (0 + GJ-1 14 (4 + u1 e. @I + . . + O-N [UN(t) + u‘v ct. r)l 
to any accuracy for any integer N > 1. 

If the rapidly oscillating forces are not large and (1) has the form 

A (9)q" + B (q)q' = F (G 9) + Q, (t> 9, z) 

then the approximate solution is found in the form (13) where U1 (t, T) GE 0. 

(13) 
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ON THE MITCHELL PROBLEM OF THE MOTION OF A LUBRICANT IN A LAYER BOUNDED 
BY A MOVING PLANE AND A FIXED PLATE OF FINITE SIZES!' 

N.N. SLEZKIN 

The Reynolds equation which appears in the hydrodynamic theory of 
lubrication is applied to the case of the flow of a lubricant between a 
plane and an inclined plate, and is solved with help of the special 
functions for a rectangular as well as segmented form of the plate. 

1. An unbounded plane moves longitudinally with velocity U in the direction of the x. 
axis. We direct the y axis towards the liquid. Let h be the thickness of the layer, depend- 
ing only on the coordinate z, p = h,ih, > 1 the ratio of the thicknesses of the layer at the 
plate edges along the x axis, a the distance between these edges and 22 the 
width of the plate in the direction of the z axis. 

Using the well-known approximate Reynolds equation, we arrive at the following boundary 
value problem for the pressure: 

L(h3 2) 
+hSz = 6plJg 

-1 <z < I, 5 = 0, p = pa; + = a, p = Pn 

o<r<a, z=+z, p=po 

Since h depends only on X, it follows that a particular solution of Eq.cl.1) can be taken 
in the form 

po = x*(z) = 6pU s s h-‘az + c, h”dr + ca (1.3) 

We shall construct the solution of the corresponding homogeneous equation in the form 
P,, = ch @a) xn H. In this case we obtain the following equation for xn: 

whose corn 
P 
lete solution will consist of two independent 

Xn = A,Xn'1 -I- I)nXnf*). 

We can show in the usual manner that the functions 

i 
&,,x,hVt = 0, m + n 

0 

when the following conditions hold: 

solutions x,,(l) and x,,@), so that 

Xn are orthogonal 

(1.5) 

A$$ (0) + B,l[$ff (0) = 0, A&$’ (a) + 0,x:) (a) = 0 (4.6) 

Combining the particular solution (1.3) with the set of solutions xn. we obtain the 
general solution of Eq.tl.1) in the form 


